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Abstract : One of the most important steps to design sliding mode control (SMC) is to design switching surface. Many
methods have been developed to design the SMC. Two different approaches for the design of switching surface for a
linearized inverted pendulum system have been presented in this paper. In the first method (Switching surface design via
Linear Matrix Inequality (LMI)) a unique design method is proposed, which characterizes linear switching surface via LMI
gave the designer some usefulness in the computational aspect, so that the switching surface for even higher-order systems
can be easily calculated through this method. In the second method (Switching surface design via Ackermann's formula)
which proposes a scalar sliding mode control design depends on the desired eigenvalues and the controllability matrix to
achieve the desired sliding mode control performance with respect to its flexibility of solution.

Keywords: Sliding Mode Control, Switching surface, Linear Matrix Inequality, Ackermann's formula.

INTRODUCTION

The Variable Structure System (VSS) is a functional system whose constructing alters in correspondence with the
existing value of its condition. A (VSS) can be noticed as a system composed of separate structures jointly with an
exchange logic between each of the structures. A VSS consists of a group of continuous subsystems with a suitable
transforming logic thus the control activities are interrupted functions of the system condition, disturbances and
reference input. The sliding mode became the basic operation mode in so-called (VSS). The main subject of this paper
is to give a key point to studying and understanding the variable structure control systems (VSCs) with sliding mode
control (SMC). The designing of SMC system is considered based on different methods to see the benefits and
flexibility of each method as well as to achieve one similar performance for the same system in the presence of
measurable and matched disturbance. The entire concept of designing the switching surface was presented with
mathematical aspects including the simulation results for each approach. The SMC expression appeared in the context
of VSS, specially speaking relay systems, then became the main procedure method for such a systems. In practice, all
design modes for VSS are based on the studied introduction of sliding modes. The conception of SMC appeared in
the Russian scientific studies in the late of 1950s. Nonetheless, the vibration control of a DC generator of an airplane
by V. Kulebakin (1932) and the utilization of transfers for controlling the course of a boat by Nikolski (1934) can
likewise be considered as contemporary sliding mode control [17]. It was Emelyanov who initially spotted that because
of adjusting the construction over the span of controlling a cycle, the properties could be accomplished which were
not characteristic in any of the individual designs [20]. The research paper by Utkin (1977) presented this idea in the
English writing [16]. Ryan and Corless [11] proposed the extreme limitations and asymptotic steadiness of a group of
uncertain plants (1984). Burton and Zinober [1] used the Continuous approximation of variable structure control for
the smoothness of the control scheme (1986). Spurgeon and Davies [14] proposed the robust sliding mode for the
plants which operating under the unmatched uncertainty (1993). The full state information is required for SMC, which
is always not easy to obtain so that an observer is needed for the prediction of the system states [10.13.22]. Furat and
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Eker (2014) proposed Second-order integral SMC and the stability and robustness properties of the proposed controller
are proved by means of Lyapunov stability theorem [4]. In (2016) Furat and Eker proposed the chattering-eliminated
adaptive SMC and the proposed controller is compared experimentally using an electromechanical system with five
different conventional sliding-mode controllers [5]. Jedda and Douik (2018) proposed a discrete-time SMC that is
sophisticated for the inverted pendulum system under-actuated system linearized around its unstable equilibrium
position [7]. Shokouhi and Markazi (2020) proposed three different approaches for switching functions by a new
Continuous approach of Sign function instead of the conventional one, to cope the unwanted chattering phenomena
in the system response [12]. Compared with the other types of control action SMC have the advantage of fixed
insensitivity to different types of variations and disturbance. Therefore, the SMC is exceedingly sophisticated in the
works related to the control of pendulum [2]. This Paper is organized as follows. In section 2, criteria of SMC is given.
Section 3, shows the two different approach of designing switching surface for linearized inverted pendulum system.
Section 4, shows the designing Results and Discussion. The conclusion is given in section 5.

CRITERIA OF SLIDING MODE CONTROL

The SMC strategy is one of the most effective approaches to build robust controllers for complex nonlinear
dynamic systems which affected by the uncertainties [21]. The SMC system is a group of continuous subsystems
together by utilizing a very fast switching control action, which forced the state to be oriented towards a certain surface
called switching surface.

Consider the following second order nonlinear system, n=2

X1 = fi(xg,%,u) (a)
Xy = f2(x1,%,u) (b)

Where, x = (x;,X%,)€Rn is state variable. If a scalar control u is considered, then the switching surface S(x) is
scalar and its discontinuity points S(x) = {x € R™| S(x) = 0} are a line in the state space. To design the controller
via [18].

_ {u* (x,t) s(x) >0 ©
~lum (1) s(x) <0 ¢
X
2 L] X Initial State
0.5 S (x) Switching Surface
0 s PR Reaching phase
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""-\-\_‘_\_‘_\\‘—H‘--\-H
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FIGURE 1. Reaching phase and Sliding Phase.

The controller u (x) is selected in a way that the tangent vectors of the condition path are directed across the
switching surface S(x). After reaching S(x), the condition is obliged back onto the S(x) whenever a deviation occurs.
Supposing unlimited fast transforming the condition will move along the S(x) after a finite period, such a movement
is known as sliding mode. This is the ideal motion of the system. In all actual implementations, the system path
deviates from the S(x) because of the chattering phenomena. The conception, explained for the scalar control case,
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can be extended in full swing to the vector case. The concept of (SMC) is to force the system condition to remain on
the switching surface where the system will show eligible lineaments. The system conditions are obliged to reach the
Switching surface S(x)=0 from any initial condition according to the (SMC) concept. The convergence of S(x) to zero
is done in a finite time [3]. After reaching S=0, it guarantee that the control impact is able of keeping the system
condition on the switching surface. The designing of sliding mode controller is divided into two main parts: First part
is designing the sliding surface to obtain the wanted dynamic conduct (stability to the equilibrium point). Second part
is the designing of discontinuous control law, which provides the attractivity to the system state when it is near the
sliding surface and provides the stability to the closed-loop system when it is on the sliding surface. The main
advantages, which the designer obtain from the system when the system is operating in the sliding mode, are the
system is robust to the effect of matched uncertainties and the system performance is dominated by reduced set
differential equations [23].

METHODS

Linear Matrix Inequality (LMI)

This section proposes an unrivaled design method of the switching surface, which portray a linear switching
surface in terms of the LMI’s. This approach ensures that the sliding mode functions features are fully steady and
independent of different types of uncertainties [6]. The main advantages of this approach are offering additional design
flexibility and some ease in the computational aspect so that the switching surface for extensive systems can be readily
achieved [8.15].

EXAMPLE 1. Consider the linearized inverted pendulum system described by Equation (4); sliding mode control
will be designed according to the following.

The initial states are: x,(0) = =159, x,(0) = 0, x3(0) = 5, x,(0) =0

The desired states are: x;(0) = 0, x,(0) = 0, x3(0) =0, x,(0) =0

Xy 0 1 0 0 X1 0
X, o —0.1818 26727 o0 X, 1.8182 .
; 0 —0.4545 31.1818 0 X, 4.5455

Where ¢p = 0.3sin(t) is a measurable and matched disturbance.
Designing the switching surface S(x) based on LMI as follows:
S(x) = Cx = B"P, (i)
Where p € R™" is positive matrix and B is the input matrix. To solve for the matrix p, the system controller
designed as:
u () = uy () + us (%) (iii)
Where u,(x) is the total controller, u, (x) is the linear feedback controller (K € R¥™*) vector matrix and ug(x)
is the sliding controller.

w(x) =-Kx (iv)
Consider the following Lyapunov function:
V(x) = xTPx v)
Rewriting it as:
Xq
Vix)=[X, X, X3 X,]P 2 , V() =P (x% + x%, + x%3 4+ x2,) (vi)
Xy
The derivative of V(x) is
V(x) = P(2x,%; + 2X,%, + 2X3X5 + 2x,%,) (vii)
Finally the time derivative of Lyapunov function is
Vix)=2x"Px (viii)
Where the closed loop system is
x=Ax + Bu (ix)

Substituting Equation (6) in Equation (12), we have
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5c=Ax+B(—Kx+ us(x))z(A — BK)x + B uy(x) (x)

x=Ax+ Buy(x) (xi)
Where A is the closed loop matrix foru = —Kx and
A=A-BK (xii)
Substituting Equation (14) in Equation (10), we have
V()=2x"TP(Ax+ Bu,(x))=2xTPAx +2x" PBuy(x) (xiii)
When(t > ¢,), there exists S(x) = BT Px = 0. Therefore
sT(x)=xTPB=0 (xiv)
It leads to
. - S —
V) =2x"PAx=x" (PA+A P)x (xv)
The condition to make V (x) < 01is
— —T
(PA + A P) <0 (xvi)
Multiplying above inequality Equation (19) by P~2
- —T
AP1+ P14 <0 (xvii)
Let P~ =M ,then
AM+ MA <0 (xviii)
Substituting Equation (15) in the above inequality Equation (21), we have
(A—BK)M + M(A—BK)T <0 (xix)
AM — BKM + MAT — MKTBT <0 (xx)
Let L =KM
AM — BL + MAT — BT[T (xx1)
The matrix M can be obtained by solving the inequality defined in Equation (24) via MATLAB M-File
42526 —1.1725 0.4474 —0.1400 0.4768 0.3140 —1.5733 —-0.3160
M= —-1.1725 6.0546  0.0387  4.0537 p= 0.3140  0.5440 —1.7023 —0.4588
0.4474  0.0387  0.2850 —0.7053[ —-15733 -1.7023 11.1131 1.9813
—0.1400 4.0537 —0.7053 7.3276 —0.3160 —0.4588 1.9813 0.5750

L =1[4.0820 09239 3.4366 —4.6933],K =[-1.6871 —1.9123 20.8971 2.3966]

C=B"P=[-0.8656 -1.0964 59110 1.7793]
Now the switching surface will be:

S(x) = Cx = —0.8656x; — 1.0964x, + 5.9110x5 + 1.7793x,
The control law u(x) can be obtained through the following steps:
The general formula for exponential reaching law is
Sx) =-n sign( S(x)) —kS(x) (xxii)

Where > 0,k > 0andS (x) = —k S(x)is the exponential term, can be solved as:

B8 = —ks(x) > T2 = —kdt

S(x)
as(x) _
S —kfdt = InS(x) = —kt

Leads to S(x) = S(0) e~
By adding the proportional rate term —k S(x) to this reaching law forces the state to approach the switching surface
faster when S(x) is enough large.

It can be shown that the reaching time for X state is move from an initial state x(0) to the switching surface
S(x) = Cx = 0 is finite and given by T :% In I
To obtain the sliding mode controller we have the direct switching function approach given in Equation (3).
Where

S(x)=Cx (xxiii)
From equating the two equations, Equation (25) and Equation (26), we have
-7 sign( S(x)) —kS(x)=Cx (xxiv)

Where x = Ax + Bu
-1 sign( S(x)) —kS(kx) =C (Ax + Bu)
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-7 sign( S(x)) —kS(x) =CAx+ CBu
Then the nonlinear sliding mode controller can be gained as

us(x) = (—nsign(Skx)) —kS(x) — CAx) (CB)™! (xxv)
In addition, the linear sliding mode controller can be gained as follows
u(x) = —Kx (xxVvi)

Then the total sliding mode controller will be equal to:
u () = uy (x) + ug(x) (xxvii)
CB = 6.0942, CB~ = 0.1641
CA=[0 -1.4750 525506 5.9110]
The positive gains of the nonlinear sliding mode controller are selected as follows:
n=5, k=2
u(x) = —Kx = 1.6871x; + 1.9123x, — 20.8971x; — 2.3966x,
us(x) = (—nsign(Sx)) —ks(x) — CAx) (CB)™*
ug(x) = (=5 sign S(x) — 25(x) + 1.4750x, — 52.5506 x3 — 5.9110x, ) 0.1641
ug(x) = (—0.8205 sign S(x) — 0.32825(x) + 0.2420x, — 8.6235 x5 — 0.9699x, )
u (x) = (1.6871x; + 1.9123x, — 20.8971x; — 2.3966x,)
+ (—0.8205 sign S(x) — 0.32825(x) + 0.2420x, — 8.6235 x5 — 0.9699x,)
u,(x) = —0.8205 sign S(x) — 0.32825(x) + 1.6871x; + 2.1543x, — 29.5206x3; — 3.3665x,

Ackermann's Formula

In the control system design Ackermann's formula is an approach used to solving the problem of pole allocation,
and it’s also a proper method to mark a linear state-feedback control law in a certain feature which results in the
closed-loop system with required eigenvalues [9]. The SMC equation is a linear one and rely on the switching surface
coefficients, a similar task emerge in the design of SMC for the linear system with a linear surface [19]. The design
of scalar SMC based on Ackermann's formula to obtain a discontinuity plane equation in outright shape as well as in
terms of the main system.

EXAMPLE 2. Consider the linearized inverted pendulum system described by Equation (31); sliding mode control
will be designed according to the following.

The initial states are: x,(0) = —159, x,(0) = 0, x3(0) =5, x,(0) =0

The desired states are: x;(0) = 0, x,(0) = 0, x3(0) =0, x,(0) =0

X 01 0 0 X1 0
X,| o 0o —098 o X, 1
% =lo o 0 1 X, + 0 (u+¢) (xxviii)
; 00 1 0 X, 1

Where f(t) = 0.5sin(3t) is a measurable and matched disturbance.
Designing the switching surface S(x) based on Ackermann's as follows:

The desired eigenvalues of sliding motion are: [r; = —1, 1, = =2, 13 = —3]
Sx)=Cx=0 (xxix)
C=e"P,(4) (xxx)
e"=[0 0 0 11[B AB A?B A®BI? (xxxi)
Pi(A)=(A—nrDA—-1rDA-11) (xxxii)
c=[0 0 0 11[B 4B 42B A3BI"*(A—nr DA —nrDA—1r31) (xxxiii)

The matrix C can be obtained by solving Equation (36) via MATLAB M-File.
C =[-3.0303 —5.5556 9.0303 6.5556]
Now the switching surface S(x) = Cx = 0 will be:
S(x) = —3.0303x; — 5.5556x, + 9.0303x3 + 6.5556x,
Then the sliding mode controller based on exponential reaching law can be gained from Equation (28) as follows:
(CB)=1, (cB)t=1
CA=[0 -3.0303 12 9.0303],k=2,n=5
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u(x) = (—5signS(x) — 25(x) + 3.0303x, — 12x3 — 9.0303x,)

RESULTS AND DISCUSSION
This section presents the simulation results of the previous examples.
Angle response & Angle speed response

Angle response & Angle speed response & 50, T T

20, ! ! > X2 | |

o —= — + f N —=== ! !

BTN A % 50 ‘ L
% 40X X1 | | 0 5 . 10 15

0 . 10 15 Time (s)
Time (s) Cart position response & Cart speed response

Cart position response & Cart speed response <+ 50, . .

= 20, x P | |

% bek ‘ \ g 0= ‘ ‘

K N - - - - - — - = - X3 | 1
o jg <=xXi 8 | | ) 5 10 15

0 5 10 15 Time (s)
Time (s)
b) Ackermann's formula
(a) LMI (®)
FIGURE 2. System states
Figure 1.shows the movement of the system states from its initial conditions at (a) [x;(0) = —15,x,(0) =

0,x3(0) = 5°and x,(0) = 0] to the desired destination (switching surface) and it approaches to zero as t — oo with
settling time approximately 6 seconds for x; and x,, 1.5 to 2 seconds for x; and 2.5 seconds for x, and at (b)
[x,(0) = —15°,x,(0) = 0,x3(0) = 5’and x,(0) = 0] to the desired destination (switching surface) and it
approaches to zero as t — oo with settling time approximately 5 seconds for x; and x,, 5 seconds for x5 and x,.

SMC Input SMC Input

U

1
Time (s) Time (s)

(a) LMI (b) Ackermann's formula

FIGURE 3. Sliding mode controller.

Figure 3. Shows the sliding mode controller signal which has less of chattering effect at (a) and (b).

Switching Surface Switching Surface
40 . . 100

0F-———————“|-—————-—— A - - ----—A S0H-————————————-—-—~— A - - ---=-—A

S (x)
S ()

-20 -50

1
Time (s) Time (s)

(a) LMI (b) Ackermann's formula

FIGURE 4. Switching surface.

Figure 4. Presents the switching surface curve goes to zero as t = oo with settling time about 5 seconds at (a) and
settling time approximately between 1.5 to 2 seconds at (b).
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CONCLUSION

Two different approaches for the design of switching surface for linearized inverted pendulum systems have been
presented in this paper. In the first method (Switching surface design based on LMI) a unique design method is
proposed, which characterizes linear sliding surfaces in terms of LMIs that also gave the designer some advantages in
the computational aspect, so that the sliding surfaces for even large-scale systems can be easily computed within this
method. In the second method (Switching surface design based on Ackermann's formula) which proposes a scalar
sliding mode control design depends on the desired eigenvalues and the controllability matrix to achieve the desired
sliding mode control performance with respect to its flexibility of solution. From the previous results, we can see that
the Ackermann’s formula gives the result with simple way according to its procedure but its faces some difficulties
compared with the LMI method, which enables the designer to easily attack various interesting problems, and for its
ability of robustness against matched disturbances.
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