Bilad Alrafidain University College Electric Power Techniques Engineering Department

Control Systems Analysis

Fourth Stage

Academic Year 2020 - 2021

Lecture Ten

Root Locus Method

Assistant Lecturer. Ibrahim Ismail

Bilad Alrafidain University College Electric Power Techniques Eng. Dep.

Control Systems Analysis, 4'th Stage Assistant Lecturer. Ibrahim Ismail

Root Locus Method

$$\frac{Y(S)}{U(S)} = \frac{G(S)}{1 + G(S)H(S)}$$
 Transfer function

$$P(S) = 1 + G(S)H(S)$$
 Characteristic equation

The closed-loop transfer function poles are the roots of the characteristic equation.

The basic characteristic of the transient response of a closed-loop system is closely related to the location of the closed-loop transfer function poles.

Bilad Alrafidain University College Electric Power Techniques Eng. Dep.

Control Systems Analysis, 4'th Stage Assistant Lecturer. Ibrahim Ismail

Root Locus Method

$$\frac{Y(S)}{U(S)} = \frac{KG(S)}{1 + KG(S)H(S)}$$
 Transfer function

$$P(S) = 1 + KG(S)H(S) = 0$$
 Characteristic equation

If the system has a variable loop gain, then the location of the closed-loop poles depends on the value of the loop gain chosen. It is important, therefore, that the designer know how the closed-loop poles move in the *s* plane as the loop gain is varied.

Root Locus Method

$$\frac{Y(S)}{U(S)} = \frac{KG(S)}{1 + KG(S)H(S)}$$
 Transfer function

$$P(S) = 1 + KG(S)H(S) = 0$$
 Characteristic equation

Finding the roots of the characteristic equation of degree higher than 3 is laborious and will need computer solution. MATLAB provides a simple solution to this problem.

Finding the roots of the characteristic equation may be of limited value, because as the gain of the open-loop transfer function varies the characteristic equation changes and the computations must be repeated.

Root Locus Method

$$\frac{Y(S)}{U(S)} = \frac{KG(S)}{1 + KG(S)H(S)}$$
 Transfer function

$$P(S) = 1 + KG(S)H(S) = 0$$
 Characteristic equation

A simple method for finding the roots of the characteristic equation has been developed by Prof. W. R. Evans in 1948 and used extensively in control engineering. This method, called the *root-locus method*, is one in which the roots of the characteristic equation are plotted in complex $S = \sigma \pm j\omega$ plane for all values of a system parameter.

The parameter is usually the gain, but any other variable of the open-loop transfer function may be used.

Unless otherwise stated, we shall assume that the gain of the open-loop transfer function is the parameter to be varied through all values, from zero to infinity.

Root Locus Method

$$\frac{Y(S)}{U(S)} = \frac{KG(S)}{1 + KG(S)H(S)}$$
 Transfer function

$$P(S) = 1 + KG(S)H(S) = 0$$
 Characteristic equation

The root locus is the locus of roots of the characteristic equation of the closed loop system as a specific parameter (usually, gain K) is varied from zero to infinity, $0 \le K \le \infty$ giving the method its name.

The root locus plot shows the contributions of each open-loop pole or zero G(s)H(s) to the locations of the closed-loop poles P(s) = 1 + G(s)H(s) = 0.

Bilad Alrafidain University College Electric Power Techniques Eng. Dep. Control Systems Analysis, 4'th Stage Assistant Lecturer. Ibrahim Ismail

Root Locus Method

In designing a linear control system, we find that the root-locus method proves quite useful since it indicates the manner in which the open-loop poles and zeros should be modified so that the response meets system performance specifications.

This method is particularly suited to obtaining approximate results very quickly. By using the root-locus method, it is possible to determine the value of the loop gain *K* that will make the damping ratio of the dominant closed-loop poles as prescribed.

The root locus is the path of the roots of the characteristic equation traced out in the s-plane as a system parameter varies from zero to infinity.

Root Locus Method

$$\frac{Y(S)}{U(S)} = \frac{KG(S)}{1 + KG(S)H(S)}$$

$$P(S) = 1 + KG(S)H(S) = 0$$

$$KG(S)H(S) = -1$$

Angle Condition: $\angle KG(S)H(S) = \pm 180^{\circ} (2K + 1), (K = 0,1,2,...)$

Magnitude Condition: |KG(S)H(S)| = 1

The characteristic equation can be split into two equations by equating the **angles** and **magnitudes** of both sides, respectively, to obtain the following:

Root Locus Method

Angle Condition:
$$\angle KG(S)H(S) = \pm 180^{\circ} (2K + 1), (K = 0,1,2,...)$$

Magnitude Condition: |KG(S)H(S)| = 1

The values of s that fulfil both the **angle** and **magnitude** conditions are the roots of the characteristic equation, or the closed-loop poles.

A locus of the points in the complex plane satisfying the **angle condition alone** is the root locus.

The roots of the characteristic equation (the closed-loop poles) corresponding to a given value of the gain can be determined from the magnitude condition.